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The existence of excessively degenerate eigenvalues occuring often in the Hiickel approach is
discussed from the point of the topological matrix. First the full symmetry group of the Hiickel
problem of three typical examples is discussed and its relation to the commonly used geometrical
symmetry group is established. Excessive degeneracy of eigenvalues of Hiickel spectra may now be
interpreted in terms of the irreducible representation of the full Hiickel graph group. The results then
are generalized to give more extended though no fully general conditions for excessive degeneracies
in Hiickel eigenvalues spectra. Furthermore conditions for removal of excessive degeneracy are
discussed.

Die Eigenwerte des Hiickelproblems von einfachen Systemen zeigen oft héhere Entartungen als
auf Grund der geometrischen Symmetrie zu erwarten wire. Dieses Phinomen wird vom Standpunkt
der topologischen Matrix diskutiert. Zuerst wird anhand von drei Beispiclen der Zusammenhang der
vollen Symmetriegruppe des Hiickelproblems mit der iiblicherweise verwendeten geometrischen Deck-
gruppe hergeleitet und die damit verbundene excessive Entartung von Eigenwerten erklirt. Fiir das
Auftreten excessiver Entartung werden sodann Bedingungen angegeben und es wird gezeigt wie diese
durch Einfiihrung von gewissen Resonanzintegralen aufgehoben werden kann. SchlieBlich wird kurz
auf den Zusammenhang mit den Permutationsgruppen hingewiesen.

Les valeurs propres du probiéme de Hiickel pour des systémes simples posséde souvent une
dégénérescence plus élevée que celle de la géometrie. Ce phénoméne sera discuté par la méthode des
matrices topologique.

Au moyen d’examples pour lesquels nous comparons le groupe géométrique et le groupe global
du probléme de Hiickel, nous expliquons la dégénérescence excessive des valeurs propres. Nous
déterminons les conditions d’existence de cette dégénérescence et les moyens qui permettent de la
lever. Nous indiquons ensuite briévement le rapport avec les groupes de permutations.

1. Introduction

Eigenvalue spectra obtained by the Hiickel method often exhibit higher
symmetry than the geometrical symmetry group of the n-center configuration
would admit. In its simplest form the Hiickel approach corresponds uniquely
to eigenvalue problems associated with graphs and therefore is essentially of a
topological or combinatorial nature. The relation to topology has been investi-
gated by several authors [1, 2, 3], but apparently no study has been published so
far concerning the relation between the topological aspects of the Hiickel problem
and its frequently occuring excessive symmetry. In this paper we give a number
of conditions for the occurence of excessive symmetry and the nature of this
symmetry. A number of typical cases will be analyzed. However, it is felt that the
general problem of the Hiickel symmetry is of a rather complex nature and no
attempt is made to treat it exbaustively.
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2. Definitions

The set of n-centers IT = {n,, n,, ..., ny} and the set of edges between nearest
neighbours P = {¥, X2, -.-, Xu} define the graph (11, P) [4] of the system.

If the Coulomb integral H;; of all n-centers and all resonance integrals H,,
between nearest neighbours are taken equal,

Hj=o=—o;
H, =p= —|B| ifiand k bonded,
H;=0 if i and k not bonded,

then the Hiickel eigenvalue problem may be written:

A—ua

(H—All=|al+BZ —il|=|Z — ‘1

=|Z—-xI|=0, JAi=a+xf,

where Z represents the incidence matrix (topological matrix) of the system. In the
sense of Bellman [5] Z is symmetric and nonnegative.

The set of all symmetry operators {g,, g5, ..., 2,} Which commute with the
Hamilton operator H,, of the Hiickel problem form the group 4 = {g,, g5, ..., .}
of the graph. These symmetry operators map incident elements of the graph onto
incident elements. Each group operator g€ % maps the element z;eIl and
x; € P into

gm,=nyell and gy;=yx,€P.

The sets of n-centers and edges II and P respectively can be used as a basis to
construct a representation of the group through permutation matrices I';(g) and
I (). They are defined by the relations

gimy ..my} = {ny ...y} = {my ... e} Tn(g),
g{xy - XM} = {1 et =0t Ip (8)

The following shorthand notation for the representation matrix will be often used
in this paper:

gin, ..oy} ={U...N}={n,...n5} 'y (2).

The representations I'; and I’y are homomorphic. It follows from the definition
that for all g € 4 the relation I'}; (g) ZI';(g) = Z holds.

3. The Group of the Graph

3.1. Illustrative Examples

The following discussion considers the relation between the graph group #4(g)
and the group s#(h) of geometrical symmetry operations which map the graph
onto itself as a whole.

In order to make the definition of 4(g) more specific we first discuss three
examples of increasing complexity.
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3.1.1. Isopropenyl-Phenylradical. Fig. 1 shows the Hiickel graph and the
incidence matrix of this n-system. The graph has the geometrical symmetry €,
and the following matrix representations of the symmetry operators e and ¢, may

be given.

() (il
..o T

B T

Ijey=1. .. .1. .., Ipey=| . . . .. ...
..... 1 . ...

...... .. R
....... . |
Ll 1/ L 1/
={1234567809}, —{2143657809}.

These matrices leave Z obviously invariant.
This is however not the full group of the graph, since mappings k and ! which
are represented by

ro=|.... . 1... Lo=|.... 1

....... L 1
oo i) L )/
—{1243657809, —(213456789

also commute with Z.

The four representation matrices form a matrix group which is isomorphic to
the group %,,. The two additional group elements k and ! map the subsets IT,
= {73 T4 M5 Mg Wg Mo} and Il = {n; 1, n,} onto themselves. They may be visual-
ized as “internal rotation” around the 7-8 bond. Under ¥, the reducible represen-
tation I'y; splits into 64 + 3B; under €,, into 64, + B, +2B,.

Since ¥, and ¥,, have only one dimensional representations, all Hiickel
eigenvalues are nondegenerate. The graph is of the alternant type and the Coulson-
Rushbrooke pairing theorem holds. This is shown by Fig. 2a, which clearly
represents these properties of the Hiickel spectrum of isopropenylphenyl radicals.

Fig. 1. Graph and incidence matrix of the isopropenyl-phenylradical
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3.1.2. Consider the Graph and Incidence Matrix of Diphenyl (Fig. 3). The
crystallographic point group 5# (k) is the matrix group consisting of the matrices

Iy(e)

Iy(c.(v)

Lo
A
...... .. ...
....... 1.
(CI0 e

..... 1., ...,
........ 1.,
......... 1.

Il
—~—
—
[\
w
S
(V)]
(=)
~J
o0
O
—_
o
—_
—_
—_
[\
“——
il
——
(98]
I
i
[\
~
oo
‘W
[«
\O
[
o]
-
—_
[
[\
S’

{432187651091211

el
R
..... 1o ..
R
Lple;()= "7
...... ... ..
......... 1.
........ ...
........... 1

{214365871091211} .

’s

The matrix group s (h) is therefore isomorphous to Z,.
However, the mapping k with the representation matrix I(k) is a further
symmetry element of the graph not contained in 5 (h):

Iylky=1]" -

={14325876910 11 12}.
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X b Fg) H#(h) 4(g) #(h)
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Fig. 2. Hiickel-Eigenvalues of the isopropenyl-phenylradical

This new element generates together with the 4 elements of the group 3#(h) the
new group %(g) which contains 8 elements and is isomorphic to the group 2,,.
The elements are collected in Table 1.

Under # (h) = 2, and %(g) = 9,, the reducible representation I; decomposes
into 44, +4B, +2B, +2B; and 44, + 4B, + 2E, respectively. In the latter case
the spectrum has degenerate eigenvalues belonging to the representation E of
degree 2 of 9,,, while no such degeneracy could occur, if the graph group were 2,.
This behavior is demonstrated by the Hiickel spectrum of diphenyl presented
by Fig. 4a.

The topology of the group %(g) = 2,, is illustrated by the diagram Fig. 5. Tt
symbolises the group operations by lines interconnecting pairs of elements = e IT
which are mapped onto each other by at least one group operation. It is obvious,

Fig. 3. Graph and incidence matrix of diphenyl
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Table 1. Representation of graph group of Diphenyl by permutation and geometrical operations

H(h) D, class %(g) Dy class {1'...12"}
hy e I 2 e I 1234567891011 12}
h, c,(2) 11 2 c, 1t {341278569 1011 12}
hs c,(» 111 2 S 111 432187651009 12 11}
hy ¢, (x) v 24 Sa I {21436587109 12 11}
{k} gs o4 v 1432587691011 12}
26 o4 v 3214765891011 12}
g7 Cye A 41238567109 12 11}
2s cy v {23416785109 12 11}
[ AL () =900
2 2d
2175 e ?ﬁ" gz“ “2278 — 5 B, 2313 — Bll
1,935 — 4 4 —1.89]  — 4, 4 —1.864 wm— 4,
—1298  c— B, B, — 1317 — B, B, — 1319 — B,
—1.000 B,,B; E —1.000 B,,B, E K57 — B,
~0.95] — B,
—0.786  — Ay Ay L0705  —— A, A _0.668 s A,
0619 m—— B B, 0705  ammmm B, B, 0.668 B
1,000 BB, E 1,000 By B, E (1Y% pu— B,
1.051 == B,
1333 v 4, 4 1317 e 4, 4, 1319 s 4
1.855  m—— By B, 1.80]  sewwmam B, B, 1.864 emwamun B,
2388 w4, Ay 2278 w— A A 3 — 4
O. O. O,
e \o T/ \=i= T/ \I
N N AN
NI =01 | ] ' | =01
e & P
RGNS */ \T e \Ik
L oA
N N
\O 0 * (a) (©

Fig. 4. Hiickel-Eigenvalues of diphenyl

1

4

Fig. 5. Diagram of the Hiickel graph group of diphenyl
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Table 2. Representation of graph group of triphenylmethyl-radical by permutations and geometrical

operations®
H(h) Dy class 4(g) o, class {...6'}
hy e I I e(1) 1 1123456}
h, c3(2) 11 2, c5(8) 1l {23156 4}
h, 11 2 11 312645
hy c5(3) 11 24 c,(6) 111 {465132}
hs 111 gs 111 {6 54321}
he mI 26 I {546213}
{k} 25 c,i(3) v {423156}
s ¢5i(8) v (531264}
212 c,i{6) VI 165432}
213 c4i(6) v 354621}
221 c,(3) Vil 453126}
235 c4(6) X {162435}
246 i(1) (456123}

* At least one element from each class is given.

that the group diagram is identical with the universal graph of 4 points. This is
equivalent to the digonal scalenohedron being a typical polyhedron of the group
Dg-

3.1.3. As a Third Example we Consider Graph and Incidence Matrix of the
Triphenylmethyl-Radical (Fig. 6). The subset {n, n, ny 7, 75 Tg} may be used as
a basis for the construction of a faithful representation. By actual construction
using a computer program for permutation groups the group collected in Table 2
is obtained, which shows that ¢(g) is isomorphic to @,. It also gives the correspon-
dence of the permutations of ¢ with the group operations of ¢,.

The HMO spectrum of triphenylmethyl radical is shown in Fig. 7. The full
representation I'y; of the graph group %(g) is 19 dimensional and decomposes
under 0, into I'y=5A4,,+4E,+ 2F,,, whereas under the geometrical group 2,
it decomposes according to I';=5A4, +2A, + 6E. As may be seen from Fig. 7a
the HMO spectrum contains two fivefold degenerate eigenvalues. By inspection
of the transformation properties of corresponding eigenvectors, the fivefold
degeneracy may be shown to originate from an accidental degeneracy of a E,
and a F,, eigenvalue.

Fig. 6. Graph and incidence matrix of the triphenyimethyl-radical
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HE)  Fg H(hy=%(g
g(h) z(g) D5 Oy 2,
- A — »
—2.211 — A: A:y 2394 — ' e 2369 - 4
|~ _2.018 e—— [ E, —2.000 =m——— E, 2019 “— e F
—1.503 S— A, Ay, —1.506 — A, Arg —1.505 — E,
| 1033 e £ E, —~1.000 ApEE Epfi TI0l e
e ——Smv—— g —
—1.000 A, E R, —0.962 £
~0.183 — Ay Ay 0.000 A, Ay,
0.046 A,
0967 s £ E, 1.000 A EE EpRy 007 e e
1.000 A4,,E F, 1.039 m——————————F
1.505 o——— Ag Ay, 1.506 we—— Ay Ay, 1.507 s— Ay
j— 1984 o —emuem— I E, 2000 e———a— E, 1.985 e e—
2.394 —— A Ay 2421 — Ay
2.591 —— Ay Ay

N o A pon

\\: ) I“}l / ﬁ’ =0.1 | /,/ I \‘\‘
CPNY YT T
N b\o/‘(’b) o *\O/’("a) NGO o

Fig. 7. Hiickel-Eigenvalues of the triphenylmethyl-radical

Again consideration of the group diagram symbolizing the topology of
%(g)= 0, is instructive, c.f. Fig. 8. The group operations g e %(g) mapping the
six elements of the equivalent set {n, 7, n5 n, 75 ng} onto cach other are now
represented by straight lines connecting each pair which at least by one group
operation is interrelated. Obviously the group diagram is the universal graph of
the set {n, ... mg}, 1.e. the graph of the octahedron including all diagonals. Again
the octahedron is a typical polyhedron of the group @,.

6
Fig. 8. Diagram of Hiickel graph group of triphenylmethyl-radical
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3.2. Movre General Formulation of the Hiickel Graph Group Problem

The examples discussed so far have the common feature, that the set IT of the
graph (I, P) may be divided into subsets IT, IT, ... IT, each of which may consist
of equivalent subsets I, with the following properties:

nD=1nvill,v.. Il Ol =611 5,8=1,2,...,
O=0,0l,u.. Hy; HgnIyg =64 1,; kk=12 ...

Similarly the set P contains subsets P, of equivalent subsets P, which define
incidence within the sets IT,. In addition P contains subsets P, which define
incidence between sets I1, and Il or sets Py ., which define incidence between
g, I, k+#k, or both.
The subdivision of the sets I, P may be illustrated by Example 3.1.3. Here

referring to Fig. 6. '

I, =mn,,

I, =H +1,+1,;,

I, ={m My 0Ty 36}

o5 ={mms Mg 7ty 1 Ty 417}

I3 = {n3MeMo My 3 Ty 515}

P12 ={16,19 X17.19 X18,19} 5

Py =Py +Py+Pas,

Pa1r ={X1,7 X7.16 X16,10 X10,4 X4,13 X13,1} »

Paa ={X2,8 8,17 X17,11 X11,5 X5, 14 X14,2} »

Pas ={X3,0 Xo,18 X18,12 X12,6 X6,15 X15,3 -

The geometrical group # (h) is now defined as the group of all incidence conserving
mappings of (IT, P) onto itself, which simultaneously map all sets I, onto themselves.
Since the sets IT,; IT,, ... IT,, under the operations h e # (h) are mapped among
themselves and never are mapped onto sets ITy,, s # s, the matrix group I';is a
direct sum of homomorphous matrix groups. Any faithful component I';_ of
I'y associated with a particular set II, may be taken as the definition of the
geometrical group s (h): for any he # (h) and =, € II,

hing myp ...} = {”;1 75;2 e =1{mg Ty ) Fns(h)-

Obviously any faithfull component I'; may further be associated to a particular
set of elements n € I1; as may be seen from the three examples given above.
The occurence of excessive symmetry depends on the incidence between sets,
i.e. on the nature of the sets P, . and Py, . In the examples discussed above there
is only one subset P, . CP which defines incidence between different subsets
I, I, CII. In the case of example 3.1.3 it is the subset P, ,, which defines incidence
between II; and II,. If now further proper incidence conserving mappings of
({1, P) onto itself exist, which map exclusively elements 7 € IT;, among themselves,
they constitute a matrix group I}, associated with the set I1, *. #(k) is defined
by the matrix group I'y;_, , which obviously is a direct sum of unit matrices repre-
senting the identical mappings of ITz onto ITz,k # k, and the incidence conserving
mappings of IT onto itself. Again any faithful component of I'; , may be used to

! It is easily seen that all equivalent sets IT, C II, admit isomorphous matrix groups I Haer

27*
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define the abstract group (k). Hence by definition for any k e (k)
k{ill gy o g} = {IT T, . Mg

= {Hsl HSZ "'HSE ,..} ........

In most practical cases (k) has order o(#)=2.
If each of the sets II,, Il admits a group X,, X, then obviously for any
keA,, keA,, s # s we have
k-k=k k.

This imimediately follows from the structure of the matrices I'; (k) and I;_, (K').

In the following discussion we restrict ourselves to the case of a single ', to
which all Examples 3.1 belong. In order to construct the Hiickel graph group %4(g)
we consider the complex s#(h) - A (k). Since clearly the groups #(h), o (k) and
%(g) are subgroups of the symmetric group of degree N (N equals the number of
n-centers), the following three cases may arise [6].

(i) Iffor any he #, ke A, h- k=k- h then the graph group %(g) is given by

G=H X

and its order o(%) = o(#) - o(A').

Hence in this case the complete system of irreducible representations of %(g)

is obtained from a complete system of irreducible representations of #(h) and
the factor group
GIH =) Hk
ket

which obviously is isomorphous to #". If /" is abelian the dimensions of irreducible
representations of ¢ are the same as for # and therefore the degeneracies of
eigenstates under both groups are the same, i.e. no excessive degeneracies appear,
if the geometrical group J# is taken as representative for the Hiickel-problem.
As a typical example for this situation we refer to Example 3.1.1 studied above,
where o(#") = 2 and # and % are isomorphous to €, and €,, respectively.

(i) If # - A = -, but if not all he # and ke A commute, then, since
HOA =e,

G=H A= K
and % is a group of order o(%) = o(s#°) - o(X’). The irreducible representations of

cannot generally be derived from those of . In case where o(X)=2, % has
order 2 - o(#’) and A is a normal divisor of ¢ of index 2. Hence

G=H e+ H k.

Even in this simple case not all the irreducible representations of ¢ may be ob-
tained from those of # and the factor group representations. If # is abelian,
% is not abelian and has irreducible representations of dimension =2. As a
consequence under these conditions Hiickel spectra will exhibit higher degeneracy
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than expected from the geometrical group #. For a typical situation, where
case (ii) is realized, we refer to Example 3.1.2. Here # and %, respectively, were
found to be isomorphous to &, (abelian) and 9,, (nonabelian) and the Hiickel
spectrum of diphenyl exhibits excessive degeneracy.

(iii) If # - A # A - # then S# - A is not a group and the graph group has to
be constructed from the groups # and 4 by application of the elementary group
laws. No general simple method seems to exist which would allow unique charac-
terization of the structure of the graph group ¢ without actual construction of it.

As an example representative for case (iii) we refer to the Hiickel problem of
triphenylmethyl radical, 3.1.3, where # and %~ were found to be isomorphous to
9, and %,, respectively,and ¥ is isomorphous to ¢,. The construction of the graph
group ¢ in this case may actually be effectuated in a rather efficient way by using
theorems on group decompositions modulo two subgroup [7]. We restrain to
reproduce the proof here.

4. Remarks
4.1. More General Valuations of the Hiickel Graph

Excessive symmetry in Hiickel problems may persist, if the simple valuation
ay; = a, By = Bis generalized to take into account more detailed models for Coulomb
and resonance integrals, and if only nearest neighbor interactions are admitted.
It is easily verified that the Hiickel matrix of the graph Fig. 9 commutes with I'; of

1 2

O\%/O % =Xy Ay Oy
ﬁ1,7=ﬂz,7 ﬁ3,5:ﬁ4,6
oy o5 =0g

30/8\04 ﬁ7.8 ﬁ5,9=ﬁ6,9
g dg
B3,8=B4—,8

50\8/06

Fig. 9. Generalized evaluation of Hiickelproblem of isopropenyl-phenylradical conserving four group
symmetry %,

Example 3.1.1, independently on the choice of the parameters oy, B 7, o7, B7.s»
ag, B3.s 03, P35, s, Bs,o and ag. Hence its graph group is still isomorphous to €,
and therefore the excessive symmetry of the simple valuation incidence matrix
3.1.1 persists for much more general valuations of the Hiickel parameters. One
may conclude, that all graph valuations consistent with the geometrical group 5
lead to the same graph group as does the simple valuation a;; =0, f;=p for
nearest, 8, = 0 for nonnearest neighbors.

4.2. Removal of Excessive Symmetry

As pointed out in 3.2 excessive symmetry occurs if the graph (II, P) admits
proper mappings of the type defining the groups J#,. Obviously these groups
reduce to identity, if P contains edges, which do not allow proper mappings
within subsets Il conserving incidence. This is equivalent to introduction of
appropriate nonnearest neighbor interactions. In order to demonstrate the conse-
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quence of nonnearest neighbor interactions for symmetry we again refer to
examples discussed above.

Ifinstead of the graph shown in Fig. 2a the graph Fig. 2b is used for the Hiickel
problem of isopropenyl-phenylradical (Example 3.1.1), the symmetry group is still
isomorphous to ¥,, and the spectrum is shifted and looses the pairing symmetry,
since graph 2b is of the nonalternating type. The graph group of graph Fig. 2¢ is
isomorphous to ,, but the graph is alternating. Since both groups ,, and %,
are abelian, the introduction of symmetry reducing nonnearest neighbor inter-
actions cannot produce splittings of levels but only shifts.

In Example 3.1.2 the graph Fig. 4b has the same group as the graph Fig. 4a,
namely 9,,. Their spectra therefore exhibit the same degeneracies, but are numeri-
cally different. In particular graph Fig. 4b is nonalternating and its spectrum does
not obey the Coulson-Rushbrooke pairing theorem. These properties contrast
with those of the graph shown in Fig. 4¢, whose nonnearest neighbor interactions
are of such a nature, that its group is isomorphous to 2, and therefore shows no
excessive symmetry in its spectrum. However the pairing property is retained.

The Example 3.1.3 is particularly instructive with respect to the relation of
nearest neighbor interactions to spectral properties. Consider first graph Fig. 7b
as compared to Fig. 7a. Again graph Fig. 7b has the same symmetry as 7a, namely
0,,but it is of the nonalternating type. The spectrum of graph Fig. 7b clearly
shows the violation of the pairing theorem and furthermore the removal of the
accidental degeneracy of a pair of E, and F;, levels by the overnext nearest neighbor
interactions occuring in graph Fig. 7b. On the other hand the nonnearest neighbor
interactions introduced in graph Fig. 7c, which also is nonalternating, drastically
reduce the graph symmetry to &5 and therefore remove both the excessively
degenerated F,, levels, the accidental degeneracy mentioned before as well as the
pairing symmetry.

It seems to be difficult to give more general topological conditions for removal
of excessive symmetry. However the examples discussed should demonstrate
typical cases for the effect of nonnearest neighbor interactions on the symmetry
group of the Hiickel problem.

4.3. Automorphisms of the Hiickel Graph Group

Since the numbering of the elements = € IT is arbitrary, any numbering may
be obtained from a reference ordering by application of the operators p of the
symmetric group #y of order N !. In general pZ # Zp for arbitrary p e % (which
in order to conserve incidence, has to be applied also to the elements y € P). Since
%(g) is a subgroup of S, the transformations p~* ¥(g) p define automorphisms
of %(g). Among these the inner automorphisms g~ * %(g)g occur, for which
gZ =Zg. If we now consider the decomposition

F=%e+%Gp,++9p,
where n= N !/o(¥%), then for each element gp, € ¥ p,, one has

(gp) ™" Z(gp)=pi ' Zps.
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Hence each element p,e{ep,ps... p,} defines an automorphism p; ! %p,, for
which the matrix p; ' Zp, is an invariant under the transformations p; ' gp,

€pc Y.

44. Relations to Theory of Permutation Groups

All definitions and results discussed so far may be reformulated in terms of
permutation groups [8]. No detailed discussion of this aspect of the Hiickel
graph problem will be made here, however a few statements may be in order. First
we note that the group of the matrix Z is intransitive or transitive whether or not
the set IT decomposes into equivalent sets. Each component is transitive and
holomorphous to %(g), any faithful component may be considered to define %(g).
Well established relations between finite abstract groups and isomorphic permuta-
tion groups may therefore be used for construction of the abstract group %(g)
from isomorphous permutation groups. Actually the most convenient method for
construction of the group is the use of a computer program for permutation
groups. Such a program has been used for generation of the Hiickel graph group
of the examples discussed above.
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