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The existence of excessively degenerate eigenvalues occuring often in the Hiickel approach is 
discussed from the point of the topological matrix. First the full symmetry group of the Hiickel 
problem of three typical examples is discussed and its relation to the commonly used geometrical 
symmetry group is established. Excessive degeneracy of eigenvalues of Hiickel spectra may now be 
interpreted in terms of the irreducible representation of the full Hiickel graph group. The results then 
are generalized to give more extended though no fully general conditions for excessive degeneracies 
in Hiickel eigenvalues spectra. Furthermore conditions for removal of excessive degeneracy are 
discussed. 

Die Eigenwerte des HiJckelproblems yon einfaehen Systemen zeigen oft hiShere Entartungen als 
auf Grund der geometrischen Symmetric zu erwarten w~ire. Dieses PNinomen wird vom Standpunkt 
der topologischen Matrix diskutiert. Zuerst wird anhand yon drei Beispielen der Zusammenhang der 
vollen Symmetriegruppe des Hiickelproblems mit der iiblicherweise verwendeten geometrischen Deck- 
gruppe hergeleitet und die damit verbundene excessive Entartung yon Eigenwerten erkl~irt. Fiir das 
Auftreten excessiver Entartung werden sodann Bedingungen angegeben und es wird gezeigt wie diese 
durch Einfiihrung yon gewissen Resonanzintegralen aufgehoben werden kann. Schlieglich wird kurz 
auf den Zusammenhang mit den Permutationsgruppen hingewiesen. 

Les valeurs propres du probl+me de Hiickel pour des syst6mes simples poss+de souvent une 
d6g6n6rescence plus 61ev6e que celle de la g6ometrie. Ce ph6nom+ne sera discut6 par la m6thode des 
matrices topologique. 

Au moyen d'examples pour lesquels nous comparons le groupe g~om6trique et le groupe global 
du probl6me de Hiickel, nous expliquons la d6g6n6rescenee excessive des valeurs propres. Nous 
d6terminons les conditions d'existence de cette d6g6n6rescence et les moyens qui permettent de la 
lever. Nous indiquons ensure bri~vement le rapport avec les groupes de permutations. 

I. Introduction 

Eigenvalue  spec t ra  ob ta ined  by the Ht ickel  m e t h o d  often exhibi t  higher  
symmet ry  than  the geomet r ica l  symmet ry  g roup  of the re-center conf igura t ion  
would  admit .  In  its s imples t  form the Htickel  a p p r o a c h  co r re sponds  uniquely  
to e igenvalue p r o b l e m s  assoc ia ted  with graphs  and  therefore  is essent ial ly of a 
topo log ica l  or  c o m b i n a t o r i a l  nature.  The  re la t ion  to t opo logy  has  been investi-  
gated by several  au thor s  [1, 2, 3], but  appa ren t ly  no s tudy has been publ i shed  so 
far concern ing  the re la t ion  between the topo log ica l  aspects  of the Hi ickel  p r o b l e m  
and  its f requent ly  occur ing  excessive symmetry .  In  this pape r  we give a n u m b e r  
of cond i t ions  for the occurence  of excessive symmet ry  and  the na ture  of this 
symmetry .  A n u m b e r  of typica l  cases will be analyzed.  However ,  it is felt tha t  the 
general  p r o b l e m  of the Hi ickel  s y m m e t r y  is of a ra ther  complex  na tu re  and no 
a t t emp t  is m a d e  to  t rea t  it exhaust ively.  
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2. Def'mitions 

The set of n-centers H = {zr 1, zc 2, ..., n~} and the set of edges between nearest 
neighbours P = {Z1, )~2 . . . . .  )~M} define the graph (H, P) [4] of the system. 

If the Coulomb integral H u of all n-centers and all resonance integrals Hik 
between nearest neighbours are taken equal, 

Hii =~---~ - [ 5 [ ;  
Hik = B = - IN if  i a n d  k bonded, 
Hik = 0 if i and k not bonded, 

then the Hiickel eigenvalue problem may be written: 

[H - 211 = [c~l + f l Z  - 211 = Z - ,l - f l~  �9 I = [Z  - x I [  = 0 , 2 = ~ + x f l ,  

where Z represents the incidence matrix (topological matrix) of the system. In the 
sense of Bellman [5] Z is symmetric and nonnegative. 

The set of all symmetry operators {gl, g2 . . . . .  g,} which commute with the 
Hamilton operator Hop of the Hiickel problem form the group ~ = {gl, g2 . . . . .  gn} 
of the graph. These symmetry operators map incident elements of the graph onto 
incident elements. Each group operator g e fr maps the element ni e / 7  and 
Zj ~ P into 

g g i  -=- gi, ~ -Yl and gz j= Zj, ~ P.  

The sets of n-centers and edges /7  and P respectively can be used as a basis to 
construct a representation of the group through permutation matrices Fn(g ) and 
F e (g). They are defined by the relations 

g { ~  -.. ~u} = { ~  . . . .  ~ , }  = { ~  ... ~ }  r , ( g ) ,  

g{x1  - "  XM} = {Z1 . . . .  ZM'} = {Z1 . . -ZMIFp  (g). 

The following shorthand notation for the representation matrix will be often used 
in this paper: 

g{lr 1 ... nu} = {1' ... N'} = {7g I . . .  nN}FII (g). 

The representations Fn and Fp are homomorphic.  It follows from the definition 
that for all g s ~q the relation F~ (g) ZFu(g) = Z holds. 

3. The Group of  the Graph 

3.1. Illustrative Examples 

The following discussion considers the relation between the graph group fg(g) 
and the group ~ ( h )  of geometrical symmetry operations which map the graph 
onto itself as a whole. 

In order to make the definition of if(g) more specific we first discuss three 
examples of increasing complexity. 
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3.1.1. Isopropenyl-Phenylradical. Fig. 1 shows the Hfickel graph and the 
incidence matrix of this n-system. The graph has the geometrical symmetry cg 2 
and the following matrix representations of the symmetry operators e and c2 may 
be given. 

f l  . . . . . .  " . . \  
. . . . . . .  

. . . . . .  

. . . . .  

r . ( e ) =  . . . .  1 , ,  

. . . . .  

. . . . . .  . 

. . . . . . .  . 

x . . . . . . . .  1] 
= { 1  2 3 4 5 5 7 8 9}, 

These matrices leave Z obviously invariant. 

r . ( c 2 )  = 

[ .  1 . . . . . . .  \ 

. . . . . . . .  

. 1 . . . . .  

. . . . . .  

. . . . .  , 

. . . .  . . . .  

. . . . . .  . 

. . . . . . .  . 

. . . . . . . .  1~ 

2 1 4 3 6 5 7 8 9 } .  

This is however not the full group of the graph, since mappings k and l which 
are represented by 

/1 . . . . . . . .  "~ 
. . . . . . .  

. . . . .  

] . . . . . .  

r ~ ( k )  = . . . . .  1 .  

. . . .  . . . .  

. . . . . .  o 

. . . . . . .  . 

\ . . . . . . . .  1/ 

= { 1  2 4  3 6 5 7 8 9}, 

also commute  with Z. 

f .  1 . . . . . .  > 
. . . . . . . .  

. . . . . .  

. . . . .  

r . ( 1 ) =  . . . .  1 . . . .  

. . . . .  o 

. . . . . .  

. . . . . . .  . 

\ .  . , . . . . .  l j  

= { 2 1 3 4 5  6 7 8 9 }  

The four representation matrices form a matrix group which is isomorphic to 
the group cg2v. The two additional group elements k and l map the subsets H I 
= {r~3 n4 ns n6 ns rCg} and H n = {nl n2 nT} onto themselves. They may be visual- 
ized as "internal rotation" around the 7-8 bond. Under cg 2 the reducible represen- 
tation F n splits into 6A + 3B; under c62v into 6A1 + B1 + 2B2. 

Since cg 2 and cg2v have only one dimensional representations, all Htickel 
eigenvalues are nondegenerate. The graph is of the alternant type and the Coulson- 
Rushbrooke pairing theorem holds. This is shown by Fig. 2a, which clearly 
represents these properties of the Hiickel spectrum of isopropenylphenyl radicals. 

1 2 

3 h 

5 6 

Fig. 1. Graph an d incidence matrix of the isopropenyl-phenylradical 

. . . .  1 " 1  z= i , : i  
�9 " " ~ i 
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3 . 1 . 2 .  C o n s i d e r  t h e  G r a p h  a n d  I n c i d e n c e  M a t r i x  o f  D i p h e n y l  (Fig.  3). T h e  
crys ta l l ograph ic  p o i n t  g r o u p  JC'(h) is the  m a t r i x  g r o u p  c o n s i s t i n g  o f  the matr i ce s  

Fn(e)  = 

r . ( c 2 ( y ) )  = 

, . 1 . . . . . . . . .  

�9 . . 1  . . . . . . . .  

. . . .  _ . . . . . . .  

. . . . .  . . . . . .  

. . . . . .  1 . . . . .  

. . . . . . .  . . . .  

. . . . . . . . .  . . 
. . . . . . . . . .  . 

. . . . . . . . . . .  1 

= { 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 } ,  

/ . . . 1  . . . . . . .  ., 
, , 1 . . . . . . . . .  

. . . . . . . . . .  

- . . . . . . . . . . .  

. . . . . . .  . . . .  

. . . . . .  . . . . .  

. . . . .  . . . . . .  

. . . .  . . . . . . .  

. . . . . . . . .  . . 

. . . . . . . .  . , . 

. . . . . . . . . . .  

. . . . . . . . . .  1 .t 

= 4 3 2 1 8 7 6 5 1 0 9 1 2 1 1 } ,  

/ .  1 \ 

. . . . . . . . . . .  

�9 1 . . . . . . . . . .  

. . . . . .  . . . . .  

. . . . . . .  . . . .  

r n ( c 2 ( z ) ) =  . . . .  1 . . . . . . .  

. . . . .  . . . . . .  

. . . . . . . .  . . . 

. . . . . . . . . .  . 

\ . . . . . . . . . . .  12  

= { 3 4 1 2 7 8 5 6 9 1 0 1 1 1 2 } ,  

I .  1 . . . . . . . . . .  ' ~  

. . . . . . . . . . .  

. . . .  . . . . . . . .  

�9 . 1  . . . . . . . . .  

. . . . .  . . . . . .  

F n ( c 2 ( x )  ) =  . . . .  1 . . . . . . .  

. . . . . . .  . . . .  

. . . . . .  . . . . .  

. . . . . . . . .  . . 

. . . . . . . .  , �9 . 

. . . . . . . . . . .  

~. . . . . . . . . .  1 .  

= { 2 1 4 3 6 5 8 7 1 0 9 1 2 1 1 } .  

T h e  m a t r i x  g r o u p  ~ ( h )  is therefore  i s o m o r p h o u s  to 9 2. 

H o w e v e r ,  the  m a p p i n g  k w i t h  the  r e p r e s e n t a t i o n  matr ix  F n ( k )  is a further 
s y m m e t r y  e l e m e n t  o f  the  graph  n o t  c o n t a i n e d  in oVf(h): 

/ 1  . . . . . . . . . . .  N 

�9 , . 1 . . . . . . . .  

. . 1 . . . . . . . . .  

. . . . . . . . . .  

. . . .  . . . . . . .  

. . . . . . .  . . . .  

r . ( k )  = . . . . . .  1 . . . . .  

. . . . .  . . . . . .  

. . . . . . . .  . . . 

. . . . . . . . . .  . 

\ . . . . . . . . . . .  1 

= {1 4 3 2 5 8 7 6 9 10 11 1 2 } .  



X 

- 2  

- 1  

-2 .160  

- 1,567 

- 1.000 
-0 .873 

0.000 

0.752 

1.000 

1.610 

2.236 
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~t~ ~(g) ~'~(h) ~(g) 

A At - 2.194 A A 1 

A A t -1 .590  A A1 

B B2 - 1 . 0 0 0  ,B B2 
A A 1 -0.811 ~ A At 

B Bi 0 B B I 

A At 0,811 A AI 

B B 2 1.000 B B 2 

A At 1.590 A At 

A A 1 2.194 A A 1 

-2 .222  

- 1.576 

- 1.005 
-0 .767  

0.0~)0 

0.767 
1.000 

1.576 

2.222 

at(h) 

A 

A 

B 
A 

B 
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X 

- 2  

- 1  

o,. /<,9 
"',~,,/"' fl'=0.1 

~  ) 

I , / o ~ ,  

I i 
~  ) 

,  ,:01 

+ i 
"'*/~(c) 

Fig. 2. Hiickel-Eigenvalues of the isopropenyl-phenylradical 

This new element generates together with the 4 elements of the group oUg(h) the 
new group f~(g) which contains 8 elements and is isomorphic to the group @2a. 
The elements are collected in Table 1. 

Under Yt~(h) = ~ 2  and fq(g) = ~ 2 d  the reducible representation/'n decomposes 
into 4A a + 4B 1 + 2B z + 2B 3 and 4A 1 + 4B z + 2E, respectively. In the latter case 
the spectrum has degenerate eigenvalues belonging to the representation E of 
degree 2 of @2d, while no such degeneracy could occur, if the graph group were ~z. 
This behavior is demonstrated by the Hiickel spectrum of diphenyl presented 
by Fig. 4a. 

The topology of the group f~(g)= ~2d iS illustrated by the diagram Fig. 5. It 
symbolises the group operations by lines interconnecting pairs of elements n ~/7 
which are mapped onto each other by at least one group operation, It is obvious, 

9 

7 

/4 2 

. . . .  1 . . . 1  . - .  

Z= :!i:::::::i! 
iiil ....... i 
�9 - i : : : : : : : :  

::::!i!i::i! 

Fig. 3. Graph and incidence matrix of diphenyl 
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Table 1. Representation of graph group of Diphenyl by permutation and geometrical operations 

9f'(h) N2 class if(g) ~2d class {1'... 12'} 

h~ e 1 
h 2 c2(z ) II 
h 3 c2(y ) Ill 
h4 c2(x) IV 
{k} 

g~ e I 
g2 c2 II 
g 3  S~, I I I  

g4 s4 III 
g5 tra IV 
g 6  O'd I V  

g 7  c 2, V 

gs c 2, V 

{ 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 }  
{ 3 4 1 2 7 8 5 6 9 1 0 1 1 1 2 }  
{ 4 3 2 1 8 7 6 5 1 0 9 1 2 1 1 }  
{ 2 1 4 3 6 5 8 7 1 0 9 1 2 1 1 }  
{ 1 4 3 2 5 8 7 6 9 1 0 1 1 1 2 }  
{ 3 2 1 4 7 6 5 8 9 1 0 1 1 1 2 }  
{ 4 1 2 3 8 5 6 7 1 0 9 1 2 1 1 }  
{ 2 3 4 1 6 7 8 5 1 0 9 1 2 1 1 }  

X~ 

--2  
- 2 . 1 7 5  
- 1.935 

- 1,298 
- 1 ~,000 

--0.786 

0.619 
1.000 

1.333 

1.855 

2.388 

,~(h) e(g) 
-%, -%a -2 .278  
Bx B2 

A1 AI --1.891 

B 1 B t - 1.317 
B2, B3 E - i . 0 0 0  

A1 A1 -0 .7 0 5  

~(h) ~(g) a~(h) = ~(a) 

B1 B2 -2 .313  B~ 

Ai A1 -1 .864  A 1 

B1 Bt - 1 . 319  B t 
B2, B 3 E -1 .051  , B 2 

-0 .951  B a 
AI A1 -0 .668  A I 

B l B2 0,705 
B 2, B 3 E 1,000 

A~ Al 1.317 

BI B2 1.891 

A I Ai 2.278 

BI g2 0.668 B1 
B2'B3 0.951 B z 

1.051 B 3 
AI AI 1.319 At 

Ba B2 1.864 .... B t 

A l A l 2.313 ~ A1 

- -  - 2  

0 

1 

- -  2 

o . /o . . .  ~ 

I I 

8,=0.1 

, , / o ~ ,  

I I 
o,,,, ,1t, o 

I 
, , / o ~ ,  

I I 
* (a) 

Fig. 4. Hfickel-Eigenvalues of diphenyl 

,/o~, 

\ , /o . . . . , ]  

; J 

Fig. 5. Diagram of the Hi.ickel graph group of diphenyl 
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Table 2. Representation of graph group of triphenylmethyl-radical by permutations and geometrical 
operations a 

9f(h) @3 class g(g) d) h class {1'... 6'} 

hi e I 
h 2 c3(2 ) II 
h 3 II 
h 4 c~(3) III 
h5 III 
h6 III 
{k} 

gl e(1) I {1 
g2 c3(8 ) II {2 
g3 II {3 
g4 c2(6 ) III {4 
g5 I l l  {6 
g6 III {5 
g7 c2i(3) IV {4 
g8 c3i(8) V {5 
g12 c2i(6) VI {1 
g13 c4i(6) VII {3 
g21 c2 (3) VIII {4 
g35 c4 (6) IX { 1 
g46 i(1) {4 

2 3 4 5 6 }  
3 1 5 6 4 }  
1 2 6 4 5 }  
6 5 1 3 2 }  
5 4 3 2 1 }  
4 6 2 1 3 }  
2 3 1 5 6 }  
3 1 2 6 4 }  
6 5 4 3 2 }  
5 4 6 2 1 }  
5 3 1 2 6 }  
6 2 4 3 5 }  
5 6 1 2 3 }  

a At least one element from each class is given. 

that the group diagram is identical with the universal graph of 4 points. This is 
equivalent to the digonal scalenohedron being a typical polyhedron of the group 

~2d"  
3.I.3. As a Third Example we Consider Graph and Incidence Matrix of the 

Triphenylmethyl-Radical (Fig. 6). The subset {~1 re2 % ~z4 ~s %} may be used as 
a basis for the construction of a faithful representation. By actual Construction 
using a computer program for permutation groups the group collected in Table 2 
is obtained, which shows that g(g) is isomorphic to (9 h. It also gives the correspon- 
dence of the permutations of g with the group operations of (9 h. 

The HMO spectrum of triphenylmethyl radical is shown in Fig. 7. The full 
representation Fn of the graph group if(g) is 19 dimensional and decomposes 
under (_O h into F n = 5Aao -t- 4Eg + 2F~,, whereas under the geometrical group 93 
it decomposes according to F u -- 5A 1 + 2A z + 6E. As may be seen from Fig. 7a 
the HMO spectrum contains two fivefold degenerate eigenvalues. By inspection 
of the transformation properties of corresponding eigenvectors, the fivefold 
degeneracy may be shown to originate from an accidental degeneracy of a E 0 
and a F1, eigenvalue. 

13 ...... I ..... I . . . . . .  / . . . . . . .  , . . . . .  . . . .  / ??iiiii?!?i!?i}iii 
7 " '  

z : i ! ! ; i i i i i i ! ! ! ? ? : i i  
2 : ! i :! : i i i i i i i i i i i i i  

Fig. 6. Graph and incidence matrix of the triphenylmethyl-radical 

27 Theoret. chim. Acta (Berl.) Vol. 14 
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X 

--2  

--1 

- 2 . 2 1 i  
- -  - 2 . 018  

- -  1 . 5 0 3  

- -  -- 1.033 
- -  1 . 0 0 0  

-0 .183  

a~(h) ~r 
~3 Oh 
AI Alg 
E Eg 

Aa A~a 

A 2, E F~u 

A~ A~a 

0.967 ,, E E~, 

1.000 A2,E F~. 
1.505 A t AI s 

1.984 E Eg 

2.591 A 1 Alg 

Xe(h) ~r 
-% Oh 

-2 .3 9 4  ~ Ax Alg 

-2.ooo e E~ 
-- 1.506 AI Alg 

-- 1.000 A2,E,E E~,F~ 

0.000 At Alg 

1.000 A2,E,E E~,Ft~ 

1.506 A~ A19 

2.000 E Eg 

2.394 AI Atg 

.,~(h) = ~(g) 

- 2.369 A I 

--2.019 E - -  

- 15o5  & 

- 1 . 0 5 1  A 2 

- 1 . 0 2 1  . E - -  

- - 0 . 9 6 2  E 

0.046 A 1 

0.951 A 2 
0.978 E 
1.039 E 

1.507 A 1 

1.985 E - -  

2.421 Ax 

-2 

-I 

I I 
,,%t;,, 

',V,F,/' /~' = 0.i 

0--'% 
I I 
* ~ 0 . ~  

I 

*.~ / *  
* ~ o / *  o (a) 

I I 
,;<.~/", a'=01 

O. ~O . . . . . . . .  O. ~ O  

\~ "~ 
Fig. 7. HiJckel-Eigenvalues of the triphenylmethyl-radical 

Again consideration of the group diagram symbolizing the topology of 
(r = Oh is instructive, c.f. Fig. 8. The group operations g ~ (r mapping the 
six elements of the equivalent set {re 1 re2 re3 re4 re5 ~z6} onto each other are now 
represented by straight lines connecting each pair which at least by one group 
operation is interrelated. Obviously the group diagram is the universal graph of 
the set {rq ... re6} , i.e. the graph of the octahedron including all diagonals. Again 
the octahedron is a typical polyhedron of the group (9 h. 

6 

Fig. 8. Diagram of Hiickel graph group of triphenylmethyl-radical 
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3.2. More General Formulation of  the Hfickel Graph Group Problem 

The examples discussed so far have the common feature, that the s e t / / o f  the 
graph (//, P) may be divided into subsets/ /1/72 .. . //~, each of which may consist 
of equivalent subsets //~k, with the following properties: 

/ / = H i ~ J / / 2 w . . . / / ~  ; HsnlIs ,=6s~, / /~  ; s , s '=  1,2, ..., 

H s = H s l ~ / / s 2 t J . . . / / s k  ; //~kC~//~k,=g)kk,//~k ; k , k ' =  1,2 . . . . .  

Similarly the set P contains subsets P~ of equivalent subsets Psk, which define 
incidence within the sets H~k. In addition P contains subsets P~,, which define 
incidence between sets Hs and Hs, or sets P~k,~k', which define incidence between 
//~k,//~k', k # k', or both. 

The subdivision of the sets H, P may be illustrated by Example 3.1.3. Here 
referring to Fig. 6. 

/ /1  ~ 7~19 

/ / 2  ~ / / 2 1  JF / /22  JF [ /23 , 
//aa = {~CaTC7~lorfi3rq6}, 
/ / 22  = {7~2~57~87~117~147"t:17} , 
H23 = 

P1,2 = 
P2 -- 
P21 = 
P22 = 
P23 = 

71:3 ~67~9 7~12 7Cl 5 g l  8} , 

{)(16, 19 )(17,19 )~18, 19}, 
/O21 ~ -P22  -]- P23 , 

{)~1,7 )~7, 16 X16, 10 X10,4 X4-, 13 X13, 1},  
{X2,8 X8,17 X17,11 )(11,5)(5,14X14,2}, 
{)~3,9 )(9, 18 )~lS, 12 )(12,6 )(6,15 )(15,3} " 

The geometrical group ~f~(h) is now defined as the group of all incidence conserving 
mappings of(H, P) onto itself, which simultaneously map all sets II  s onto themselves. 
Since the sets Hsl Hs2 ... Hsk under the operations h e 24"(h) are mapped among 
themselves and never are mapped onto sets//s'k', S' # S, the matrix group F n is a 
direct sum of homomorphous matrix groups. Any faithful component l'n~ of 
Fn associated with a particular set //~ may be taken as the definition of the 
geometrical group ~f(h): for any h e ~ ( h )  and Tcsr e Hs 

h {~sl ~z~2 ...} = {~;1 ~;2 ...} = {Z~sl ~2  ...} r.,(h). 
Obviously any faithfull component Ins may further be associated to a particular 
set of elements zc e H~ as may be seen from the three examples given above. 

The occurence of excessive symmetry depends on the incidence between sets, 
i.e. on the nature of the sets Ps,~' and P~k,sk'. In the examples discussed above there 
is only one subset Ps, s, C P which defines incidence between different subsets 
l-I,  Hs, C II. In the case of example 3.1.3 it is the subset P1,2, which defines incidence 
between 171 and //2. If now further proper incidence conserving mappings of 
(/7, P) onto itself exist, which map exclusively elements 7c ~//sk among themselves, 
they constitute a matrix group Fns~ associated with the set//~k 1. X~(k) is defined 
by the matrix group F ~ ,  which obviously is a direct sum of unit matrices repre- 
senting the identical mappings of fls~ onto//s~,'k # k, and the incidence conserving 
mappings of//sk onto itself. Again any faithful component of Fn~ may be used to 

1 It is easily seen that all equivalent sets H~k C H~ admit isomorphous matrix groups Fu~ ~. 

27* 



392 U. Wild, J. Keller, and Hs. H. Giinthard: 

define the abstract group ~ (k ) .  Hence by definition for any k e ~ff~(k) 

k { n s l  n s 2  ...  . . . }  = { r r s l r l ;2  . . .  . . . }  

= { I l s l  II~2 . . .  flsr~ . . . }  

r~ 

In most practical cases ~ ( k )  has order O(fs) = 2. 
If each of the sets FI~, 11 s, admits a group ~f~, ~s,, then obviously for any 

k s ~(~, k e o'f~,, s r s' we have 
k ' k ' = k " k .  

This immediately follows from the structure of the matrices Fns~(k) and Fns,~(k'). 

In the following discussion we restrict ourselves to the case of a single de", to 
which all Examples 3.1 belong. In order to construct the Htickel graph group ~(g) 
we consider the complex ~ ( h ) ' ~ " ( k ) .  Since clearly the groups ~(h) ,  J{(k) and 
if(g) are subgroups of the symmetric group of degree N (N equals the number of 
~-centers), the following three c a s e s  m a y  arise [6]. 

(i) If for any h ~ d4 ~, k 6 J(', h. k = k" h then the graph group if(g) is given by 

and its order o(ff) = o(Jg) �9 o(~(). 
Hence in this case the complete system of irreducible representations of (r 

is obtained from a complete system of irreducible representations of ~ ( h )  and 
the factor group 

k~,X" 

which obviously is isomorphous to 9ft. If J r  is abelian the dimensions of irreducible 
representations of fr are the same as for Yg and therefore the degeneracies of 
eigenstates under both groups are the same, i.e. no excessive degeneracies appear, 
if the geometrical group Yt ~ is taken as representative for the Htickel-problem. 
As a typical example for this situation we refer to Example 3.1.1 studied above, 
where o(d() = 2 and ~ and fq are isomorphous to cg a and cg2v respectively. 

(ii) If J4 ~- oU = oU" ~(t ~, but if not all h ~ ~ and k ~ off commute, then, since 
~w~,U = e, 

fr = yg �9 Jg  = ~ff �9 j/g 

and f# is a group of order o(fr = o(d4~) �9 o (~) .  The irreducible representations of fq 
cannot generally be derived from those of ~ .  In case where o(~r fr has 
order 2 " o ( ~  '~) and ~u ~ is a normal divisor of f# of index 2. Hence 

(d = ~f f  . e + J t~ . k . 

Even in this simple case not all the irreducible representations of fr may be ob- 
tained from those of 9ff and the factor group representations. If ~ is abelian, 
fr is not abelian and has irreducible representations of dimension > 2. As a 
consequence under these conditions Hfickel spectra will exhibit higher degeneracy 
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than expected from the geometrical group J/f. For a typical situation, where 
case (ii) is realized, we refer to Example 3.1.2. Here ~ and if, respectively, were 
found to be isomorphous to ~2 (abelian) and ~2e (nonabelian) and the Hiickel 
spectrum of diphenyl exhibits excessive degeneracy. 

(iii) If ~/f" J t  ~ 24 r �9 ~ then ~ .  ~ is not a group and the graph group has to 
be constructed from the groups J/f and s (  by application of the elementary group 
laws. No general simple method seems to exist which would allow unique charac- 
terization of the structure of the graph group f# without actual construction of it. 

As an example representative for case (iii) we refer to the Hiickel problem of 
triphenylmethyl radical, 3.1.3, where ~f~ and ~r  were found to be isomorphous to 
~3 and qf2, respectively, and ff is isomorphous to (9 h. The construction of the graph 
group ~ in this case may actually be effectuated in a rather efficient way by using 
theorems on group decompositions modulo two subgroup [7]. We restrain to 
reproduce the proof here. 

4. Remarks 

4.1. More General Valuations of the Hiickel Graph 

Excessive symmetry in Hiickel problems may persist, if the simple valuation 
c~, -- ~,/3~k ----/3 is generalized to take into account more detailed models for Coulomb 
and resonance integrals, and if only nearest neighbor interactions are admitted. 
It is easily verified that the Hfickel matrix of the graph Fig. 9 commutes with F n of 

1 2 
O ~ 7 / Q ) - -  51 = N2 53 = 54 

O - -  81.7=82.7 83,5 =/h.~ 
57 ~5 ~ ~6 

3 0 / /  ~ O 4  ff7,8 85,9=86,9 
[ [ 58 ~9 

50... 9 1.O 6 83,8=84,8 
~ O "  

Fig. 9. Generalized evaluation of Htickelproblem of isopropenyl-phenylradical conserving four group 
symmetry c~2~ 

Example 3.1.1, independently on the choice of the parameters cq, fll,7, ~7, fl7,8, 

es, fl3,s, e3,/33,5, c%,/35,9 and c~ 9. Hence its graph group is still isomorphous to W2v 
and therefore the excessive symmetry of the simple valuation incidence matrix 
3.1.1 persists for much more general valuations of the Hiickel parameters. One 
may conclude, that all graph valuations consistent with the geometrical group 
lead to the same graph group as does the simple valuation cql = e, /3ik =/3 for 
nearest, /3~k = 0 for nonnearest neighbors. 

4.2. Removal of Excessive Symmetry 

As pointed out in 3.2 excessive symmetry occurs if the graph (//, P) admits 
proper mappings of the type defining the groups ~ .  Obviously these groups 
reduce to identity, if P contains edges, which do not allow proper mappings 
within subsets Hsk conserving incidence. This is equivalent to introduction of 
appropriate nonnearest neighbor interactions. In order to demonstrate the conse- 
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quence of nonnearest neighbor interactions for symmetry we again refer to 
examples discussed above. 

If instead of the graph shown in Fig. 2a the graph Fig. 2b is used for the Hiickel 
problem of isopropenyl-phenylradical (Example 3.1.1), the symmetry group is still 
is0morphous to (g2~ and the spectrum is shifted and looses the pairing symmetry, 
since graph 2b is of the nonalternating type. The graph group of graph Fig. 2c is 
isomorphous to cg 2, but the graph is alternating. Since both groups ~2v and (~2 
are abelian, the introduction of symmetry reducing nonnearest neighbor inter- 
actions cannot produce splittings of levels but only shifts. 

In Example 3.1.2 the graph Fig. 4b has the same group as the graph Fig. 4a, 
namely ~2d. Their spectra therefore exhibit the same degeneracies, but are numeri- 
cally different. In particular graph Fig. 4b is nonalternating and its spectrum does 
not obey the Coulson-Rushbrooke pairing theorem. These properties contrast 
with those of the graph shown in Fig. 4c, whose nonnearest neighbor interactions 
are of such a nature, that its group is isomorphous to N2 and therefore shows no 
excessive symmetry in its spectrum. However the pairing property is retained. 

The Example 3.1.3 is particularly instructive with respect to the relation of 
nearest neighbor interactions to spectral properties. Consider first graph Fig. 7b 
as compared to Fig. 7a. Again graph Fig. 7b has the same symmetry as 7a, namely 
(gh, but it is of the nonalternating type. The spectrum of graph Fig. 7b clearly 
shows the violation of the pairing theorem and furthermore the removal of the 
accidental degeneracy of a pair ofE o and Ftu levels by the overnext nearest neighbor 
interactions occuring in graph Fig. 7b. On the other hand the nonnearest neighbor 
interactions introduced in graph Fig. 7c, which also is nonalternating, drastically 
reduce the graph symmetry to ~3 and therefore remove both the excessively 
degenerated Flu levels, the accidental degeneracy mentioned before as well as the 
pairing symmetry. 

It seems to be difficult to give more general topological conditions for removal 
of excessive symmetry. However the examples discussed should demonstrate 
typical cases for the effect of nonnearest neighbor interactions on the symmetry 
group of the Hiickel problem. 

4.3. Automorphisms of the Hiickel Graph Group 

Since the numbering of the elements ~ e/7 is arbitrary, any numbering may 
be obtained from a reference ordering by application of the operators p of the 
symmetric group 5~N of order N !. In general pZ v ~ Zp for arbitrary p e 5PN (which 
in order to conserve incidence, has to be applied also to the elements Z e P). Since 
N(g) is a subgroup of 5% the transformations p-1 N(g)p define automorphisms 
of ~(g). Among these the inner automorphisms g-1 ~(g)g occur, for which 
gZ = Zg. If we now consider the decomposition 

5PN = N e + ~P2 "-k "" + Np, 

where n = N !/o(~), then for each element gPk E (gPk, one has 

(gpk)- i  Z(gpk ) =. p~l  Zpk .  
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Hence  each e lement  Pke {ep2 P3 ... Pn} defines an a u t o m o r p h i s m  p ;1  (~Pk, for 
which the mat r ix  p l Zpk is an invar ian t  under  the t r ans fo rmat ions  p k l g p k  

P;I NPk. 

4.4. Relations to Theory of Permutation Groups 

All def ini t ions  and  results  d iscussed so far m a y  be re fo rmula ted  in te rms of 
p e r m u t a t i o n  g roups  [-8]. N o  de ta i led  discuss ion of this aspect  of the Hi ickel  
g raph  p r o b l e m  will be m a d e  here, however  a few s ta tements  m a y  be in order.  F i r s t  
we note  tha t  the g roup  of the  mat r ix  Z is in t rans i t ive  or  t ransi t ive  whether  or  no t  
the set H decomposes  into equiva lent  sets. Each  c o m p o n e n t  is t rans i t ive  and  
h o l o m o r p h o u s  to fq(g), any  faithful c o m p o n e n t  m a y  be cons idered  to define N(g). 
Wel l  es tab l i shed  re la t ions  be tween finite abs t rac t  g roups  and  i somorph i c  p e r m u t a -  
t ion groups  m a y  therefore  be used for cons t ruc t ion  of  the abs t rac t  g roup  N(g) 
f rom i s o m o r p h o u s  p e r m u t a t i o n  groups.  Actua l ly  the  mos t  convenient  m e t h o d  for 
cons t ruc t ion  of the  g roup  is the use of a c o m p u t e r  p r o g r a m  for p e r m u t a t i o n  
groups.  Such a p r o g r a m  has  been used for genera t ion  of  the  Hfickel  g raph  g roup  
of  the examples  discussed above.  
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